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Abstract-The model of heat and mass transfer in porous media used here is deduced from Whitaker’s 
theory. It leads to a very comprehensive set of equations and takes into account the effect of the gaseous 
pressure. It is numerically solved with unidir~tionai transfers. The evolution of temperature, moisture 
content and pressure as we11 as the overall drying kinetics are calculated for two very different porous media. 
This device permits to study the sensitivity of the model to internal parameters and conditions at the 

interface as well as the effect of certain reductions in the model. 

1. INTRODUCTION 

CONVECTIVE drying is usually encountered in many 
industrial fields (food industry, building industry, for- 
est products,. . .). Therefore, the study of this type 
of problem becomes very important and for several 
decades now has attracted the attention of several 
authors. Among the works relating to this question 
we cite the works of Whitaker [l-3] and of Bories et 
al. [4], of Moyne and Degiovanni [5] concerning dry- 
ing at high temperature that of Basilic0 and Martin 
[6] and Plumb et al. [7] for the drying of wood, of 
Harmathy [S] and Huang ef al. [9, lo]. 

Our contribution consists in the theoretical study 
of unidi~tional heat and mass transfer during the 
drying of porous media. The model used is drawn 
from the work of Whitaker [I] and leads to a very 
comprehensive set of equations, with three variables 
(temperature, moisture content and pressure). We 
note that the effect of pressure has been considered, 
to our knowledge, only in cases of drying at high 
temperature [S] and in cases where the initiaI moisture 
content is rather weak [7-91. 

This model is solved numerically for two very 
different porous media. This choice permits to pin- 
point the effect of all the physical characteristics. 

The numerical simulation enables one to determine 
the evolution of temperature, moisture content, and 
pressure as well as the overall drying kinetics. 

Further, a study of the sensitivity of the model to 
transport parameters and conditions at the interface 
enables one to select those which have to be deter- 
mined in detail. 

We also propose certain reductions in the model : 

(a) in all the simulated cases, heat transfer by con- 
vection is negligible ; 

(b) given certain conditions (detailed in the text) 
one can dispense with Darcy’s law and the continuity 
equation of the gaseous phase. 

2. FORMULATION OF THE PROBLEM 

The configuration is that of a flat porous slab con- 
stituted with a solid phase that is inert and rigid, a 
liquid phase (pure water) and a gaseous phase which 
contains both air and water vapour. One side of this 
slab is exposed to an air flux with fixed characteristics 
{velocity, temperature and relative humidity). The 
other, adiabatic and imperious, can also represent a 
plane of symmetry (Fig. 1). Initially, the porous 
medium is isothermal and at hydrostatic equilibrium. 

The theoretical formulation of heat and mass trans- 
fer in porous media is usually obtained by a change 
in scale. We pass from a microscopic view where the 
size of the representative volume is small with regard 
to the pores, to a macroscopic view where the size of 
the representative volume o is large with regard to the 
pores. 

The macroscopic equations are obtained by aver- 
aging the classical fluid mechanics, diffusion and 
transfer equations over the averaging volume w. The 
average of a function f is 

and the intrinsic average over a phase i is 

p=;bfdw. (2) 

Given Whitaker’s theory [I], the macroscopic equa- 
tions governing heat and mass transfer in porous 
media are given in the following sections. 

2.1. Generalized Darcy ‘s law 

Darcy’s law is extended by using relative per- 
meabilities. For the gaseous phase, since no gravi- 
tational effect is noted 
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NOMENCLATURE 

specific heat [J kg-’ K-‘1 
effective diffusivity [m’ s- ‘1 

drying rate [kg m-* s-‘1 
gravitational constant [m s-‘1 
ambient relative humidity 
latent heat of evaporation [J kg- ‘1 
intrinsic permeability [m’] 
relative permeabilities of gas and liquid 

thickness of the porous medium [m] 
molar mass [kgmol-‘1 
evaporation rate [kgmm3 SC’] 
pressure [Pa] 
universal gas constant [J mol-’ K-‘1 
relative saturation 
temperature [“C or K] 
time [s] 

time increment [s] 
moisture content [kg of water/kg of 

solid] 
velocity [m s- ‘1 
distance [m] 
thickness of control volume [m] 
distance between two adjoining nodes 

[ml. 

Greek symbols 

; 

heat transfer coefficient [W m-* K-‘1 
mass transfer coefficient [m SC’] 

porosity 
effective thermal conductivity 
[Wm-‘K-‘1 

P dynamic viscosity [kgm-’ SC’] 

V cinematic viscosity [m’s_‘] 

P density [kg m-‘1 
u surface tension [N m- ‘1 
w averaging volume [m”]. 

Subscripts 
a 
atm 
C 

cr 

eq 
g 
i 
ir 
1 

Psf 
S 

sat 
V 

vs 

cc 

air 
atmospheric 
capillary 
critical 
equilibrium 

gas 
spatial index 
irreducible 
liquid 
fibre saturation point 
solid 
saturated 
vapour 
saturate vapour 
ambient. 

Superscripts 

f: 
intrinsic average over the gaseous phase 
intrinsic average over the liquid phase 

n time index 
_ 

average value. 

1 

AX 

Air flow 
* 

I 

Impermeoble side - or plane of symmetry 

FIG. I. Geometrical configuration. 

where 17~ is the speed of the gaseous phase, K the 
intrinsic permeability, Kg the relative permeability to 
the gaseous phase, Isi the average intrinsic pressure 
of the gaseous mixture, and p”s the viscosity of the 
gaseous phase. 

where ti is the evaporated water in units of time and 
volume. 

For the vapour 

For the liquid phase where 

where 6, is the speed of the liquid phase, K, the relative 
permeability to the liquid phase, P, the capillary pres- 
sure, ps the vicosity of the liquid, g the gravitational 
constant, and p, the density of liquid. 

2.2. Mass conservation equations 
For the liquid 

(6) 
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pV and & are the average densities of the water vapour 
and of the gaseous mixture, D,, the coefficient of the 
effective diffusion of vapour in the porous medium. It 
takes into account the variations in resistance to the 
diffusion due to the tortuosity and to the effects of 
constriction. 

For the gaseous mixture 

2.3. Energy conservation equation 
By assuming all the specific heats as constant and 

with the aid of the mass conservation equations, the 
energy balance takes a form which is unusual but 
efficient in the calculations 

here, Ah&, is a constant defined by 

Ah&, = Ah,,, + (C,, - C,,) F 

i,, the effective thermal conductivity of the porous 
medium, Ah,,, the enthalpy of vaporization, PC, the 
constant pressure heat capacity of the porous medium 

PC,, = p,C*,+p,C,,+p”C,“+p,C,,. (10) 

2.4. Thermodynamic relations 
The partial pressure of the vapour is equal to its 

equilibrium pressure 

P: = P&T, S). (11) 

The gaseous mixture is supposed to be an ideal 
mixture of perfect gases 

p, = p,RF/IM,; j = a,v (12) 

& = 1 P,; & = c p,. (13) 
j=a.v /=a." 

2.5. Boundary conditions 
On the adiabatic and impervious face (x = 0) the 

fluxes of heat, air and moisture are null 

On the permeable face (x = L) the fluxes are con- 
tinuous and the pressure of the gaseous mixture is 
constant 

x = L: p;!?,+p,pv, = PIp:-pYml (15) 

I,, g + Ah,,,~,‘z?, = al T, - ?=‘I (16) 

P,” = P,,,. (17) 

The coefficients of heat exchange t( and mass ex- 
change p should be constant. 

2.6. Initial conditions 
Initially, the pressure of the gaseous mixture and 

temperature are constant in porous media. The dis- 
tribution of moisture content is that of hydrostatic 
equilibrium 

T = T,, ; Pi = P,,, (18) 

s_ 
ax - dg. 

This equation is associated with a particular con- 
dition. 

3. NUMERICAL RESOLUTION 

The system of the presented equations is solved by 
a method of finite differences based on the notion of 
control domain as described by Patankar [I I]. 

This approach has the advantage of assuring the 
conservation of the fluxes and thus avoiding the gen- 
eration of parasitical sources. 

The domain of integration constitutes a grid of 
points P, around which are constructed control 
domains (Fig. 2). The value of any physical quantity 
Q at point Pi and at time t + At will be noted @r+ ’ . 

The method consists of integrating the conservation 
equations on the interval It, t+AtJ and on the control 
domain. 

In order to bring the resulting integral equations 

FIG. 2. Numerical grid. 
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back to algebraic equations tying together the values 
of the solutions to the nodes on the grid, we make the 
following hypotheses : 

(a) the values of the terms of accumulation (rYf/&), 
and of the source terms ti, and (A!~,,,riz)~ can be con- 
sidered as being the averages on the control domain 
constructed around Pi of af /at, ti and Ah,,, ti. 

(b) the source terms, the terms of convection as well 
as those of diffusion are evaluated at time t + At (fully 
implicit scheme). 

Taking into account these hypotheses the con- 
servation equations become 

Ax 

(23) 

On the surfaces of the porous medium, the equa- 
tions are rendered discrete by integrating over half the 
control domain and by taking the boundary con- 
ditions into account. 

The different parameters are calculated over the 
faces of the control domains, their variations being 
taken as linear. 

The primary derivations are approximated over two 
nodes within the porous medium 

21 
n+ I 

i-1 ax i+ l12 
= (.f:,‘l’ -f:+ ‘)/6x. (24) 

For greater precision, they are approximated over 
three nodes on the permeable surface 

af 
ntl 

C-J ax N 

= ( - 3&+ ’ +4f”,+_‘, _fN!.‘J26X. (25) 

Convection in the energy equation is calculated by 
an upwind scheme [ 1 I]. 

Given the strongly non-linear nature of the equa- 

I 1, 
I I --I-I 

r No. I 

No.2 

0.4 r 

I I 0 10 20 
#(mm) 

FIG. 3. Adaptation of grid to moisture profile. 

tions, an iterative Newton’s method is used in associ- 
ation with under-relaxation. 

The simulation of the drying process sometimes 
gives rise to steep drying fronts. With a view to attain- 
ing greater precision without increasing the number 
of nodes in the grid, an algorithm distributes the nodes 
in relation to the humidity profile (Fig. 3). The grid 
is recalculated during the drying process whenever the 
slope or the position of the front changes significantly. 

4. RESULTS 

4.1. Description of drying process 
The numerical model is applied to the drying of two 

different porous media (clay brick and softwood). The 
physical characteristics of these media are detailed in 
the Appendix. The results obtained make it possible 
to analyse precisely the different mechanisms involved 
in each drying phase. 

4.1.1. Period of constant drying rate. At the start of 
drying, when the initial water content is sufficient, the 
porous medium approaches the temperature of the 
wet bulb. During this transition phase, the higher the 
initial temperature is, the greater the drying rate {Fig. 

4). 
When the drying becomes stable, the temperature 

is uniform within the porous medium. The flow of 
vapour being negligible in the core of the medium, 
evaporation only takes place at the surface. The 
boundary conditions become 

Va -F) = pALp(&(~)-py~ ). (26) 

The drying rate is proportional to the heat supplied 

D, = &(T,-ii). (27) 
yap 

Given the characteristics of the air flow, we can see 
on equation (27) that the drying rate D, depends on 
tl and T. In the plane (p,,, T), point E with coordinates 
(pV,, T,) characterizes the external air flow. Point P 
with coordinates (Pf, T), which characterizes the sur- 
face of the porous medium, is obtained by crossing 
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0 ratio /I/cc can be precisely calculated by the analogy 

%I 
between the transfers. 

Finally, for all temperatures below the boiling 
FIG. 4. Drying rate for brick (T, = 360.15 K, H, = 0, a = 15 

W m-* K-‘, /l= 0.014 m s-l). 
point, p can be determined by the analogy between 
the transfers without significant error. 
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P& and Pi,, the mass exchange coefficient /l is really 
difficult to measure. The ratio P/x is often given by 
the analogy between the transfers. 

Nevertheless, this analogy is valid only when the 
vapour pressure is negligible with regard to the total 
pressure : between 65 and 95”C, the ratio /l/x increases 
by a factor of about 5 [12]. 

It is also of great interest to study separately the 
influence of coefficients u and 8. 

When the equilibrium temperature F is sufficiently 
high, it is only slightly affected by the term - (a/P)AhVaP 
(point 1 in Fig. 5). The simulations confirm that, 
in such conditions, the drying rate depends only 
slightly on fl and is mainly proportional to c( 
(Fig. 6). 

For small values of T, the slope of the saturation 
curve is weak. The equilibrium temperature becomes 
sensitive to the term -(a//3)AhvaP (point 2 in Fig. 5) 
and each of the exchange coefficients has an influence 
on the drying rate. However, in these cases, the vapour 
pressure is much lower than the total pressure: the 

During this period of constant drying rate, the 
increase in the volume of gas carried by liquid extrac- 
tion tends to subject the medium to partial vacuum 
(Figs. 7 and 8). This lowering of pressure restrains 
the moisture movement. The one persists while the 
moisture flows essentially by capillary action. 

4.1.2. Period of decreasing drying rate. When the 
liquid phase becomes discontinuous, the liquid 
migration stops (pendular state). Thus, the moisture 
content decreases notably at the surface of the 
medium which becomes hygroscopic. The pressure of 
the vapour at the interface, and thus the drying rate, 
decreases. The gradient of vapour pressure generates 
gaseous diffusion towards the surface and evaporation 
inside the porous medium. During this period, the 
evaporation propagates a zone in which the gradient 
of moisture content is very high (drying front) towards 
the impervious surface of the slab. 

The temperature rises throughout the porous 
medium. The discontinuity of the temperature gradi- 

r PC) ent close to the front (Figs. 7(a) and 8(a)) is a result 

FIG. 5. Graphical determination of interface conditions. 
of the heat flux necessary for evaporation and of the 
change in effective thermal conductivity. A pressure 
gradient is observed between the front and the surface 
(Figs. 7(c) and 8(c)). This results from the resistance 
of the porous medium to the gas migration generated 

the saturation curve with the line of slope - (tl//?)AhVBP by diffusion. In the model, this effect is formulated by 
coming from E (Fig. 5). Darcy’s law (3). Between the drying front and the 

Thus, given pVm and T,, the determination of the impervious surface, a slight convection of the gaseous 
equilibrium temperature Fneeds the knowledge of the phase and the rise in temperature cause the pressure 
ratio /3/a. to level out at its value on the front. The value of this 

Equation (27) allows an accurate experimental pressure becomes even more important as the drying 
determination of the heat exchange coefficient tl. On rate increases and as the permeability of the gaseous 
the other hand, given the very low difference between phase weakens. 
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Wood r, = 8OOC 

N, 6 60% 

- a*: 8” 

. . . . ..I.. 00 ; 8” x 0.2 

-.- a0 x 0.6 ; 8” 

-0.4 

t(h) 

FIG. 6. Influence of exchange coefficients (7’, = 8O”C, H, = 60%, 7;,i 
8” = 0.02 m s-l). 

50- 5s 
r, 

90 min 
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0 - 
0 

= 65°C. a” = 23 W m-’ K-‘, 

x (cm) 

FIG. 7. Temperature (a), saturation (b), and pressure (c) profiles for brick (r, = 360.15 K, H, = 0, 
7&i = 320.15 K, a = 15 W m-* K-‘, fi = 0.014 m s-‘). 

As the front separates from the interface, the steep- 
ness in the moisture content profile becomes smaller, 
temperature and pressure higher. When the front 
reaches the impervious surface, the entire porous 
medium is in the hygroscopic zone (third drying 
period). The pressure of the gaseous phase decreases. 
Temperature, moisture content and pressure ap- 
proach respectively, ambient temperature, equifib- 
rium moisture content and atmospheric pressure. 

4.2. Sensitivity to transport parameters 
The aim of this study is to gain an idea of the 

allowable errors at the time of the evaluation of the 
transport parameters. 

4.2.1. Efictive dz~asivity of uapour. In the domain 
of Iiquid migration, the vapour pressure is equal to 
the saturate vapour pressure of which the gradient is 
negligible. Therefore, the effective diffusivity has no 
influence upon drying. On the other hand in the hygro- 
scopic domain, the value of this coefficient directly 
controls the migration of moisture. However, the 
character of the transport does not become changed : 
it is interesting to note that two proportional values 
of Dcff give, for the same average saturation (therefore 
at different moments) the same water content profiles 
(Fig. 9). 

4.2.2. Eflective thermal conductivity. Results 
obtained with a conductivity I,, twice as great show 



;j 
e 
Il.. 

““w 
I 15h / 

70 L 

Model of heat and mass transfer during convective drying of porous media 963 

x(mm) 

FIG. 8. Temperature (a), moisture content (b), and pressure (c) profiles for wood (T, = 8O”C, H, = 60%, 
T,,, = 65”C, a = 23 W m-* K-‘, /I = 0.02 m s-l). 
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FIG. 9. Influence of effective diffusivity (brick). 

that the model is not very sensitive to this parameter. 
As thermal conductivity is significant in regard to 
existing thermal fluxes, the resistance of the porous 
medium to heat transfer, and thus the temperature 
gradient are always low. Despite considerable vari- 
ations in &, the influence of this gradient on moisture 
transfer remains negligible in the liquid phase as well 
as in the gaseous phase. 

4.2.3. Intrinsic permeability. The intrinsic per- 
meability characterizes the aptitude of a single fluid 
phase to migrate within the porous medium. In the 
case of drying where two fluid phases exist together, 
this parameter is used for the calculation of the relative 
permeability to each phase. 

Generally the greater the intrinsic permeability is, 
the lower the gradients of pressure and of moisture 
content are (Fig. 10). In the domain of liquid 
migration, the influence of this parameter is per- 
ceptible only when the moisture profile is far from 
the hydrostatic profile. The duration of the constant 

drying rate period increases when K increases since 
the interface later becomes hygroscopic. In the hygro- 
scopic domain, K determines the interaction between 
gaseous diffusion and the gradient of gaseous phase 
pressure (see Section 5.2). 

4.2.4. Relative permeabilities. These parameter 
functions of relative saturation determine the resist- 
ance to migration of each phase (liquid and gas) with 
regard to those where the porous medium is fully 
saturated. They have a significant influence especially 
in the zones where these values are very low (near the 
fully saturated state for Kg and the end of the funicular 
state for KJ. It is to be noted that the experimental 
detection of very low permeability is extremely diffi- 
cult : it is generally taken as equal to zero in a drying 
model. Calculations show however that, when one 
attributes values that are very low but nonzero to 
permeabilities, then the moisture content profiles 
change considerably. 

Thus, in the case of wood, the few pits which are 
located on the lateral cell walls cannot be ignored. 
The geometrical model inspired by Comstock and 
taken up by Spolek and Plumb [ 131 is used here with- 
out making the assumption that all the pits are on the 
overlapped surfaces (Fig. 11 (a)). The permeability 
to the gaseous phase is no longer strictly null above 
irreducible saturation and the phenomenon of the 
trapping of the gaseous phase disappears (Fig. I 1 (b)). 

The considerable differences obtained in moisture 
profiles show the influence of the gaseous phase on 
liquid migration and thus, the necessity for certain 
porous media that the drying model take into account 
the gaseous pressure. 

Concerning liquid permeability the value of irre- 
ducible saturation (saturation below which liquid per- 
meability is equal to zero) takes a prominent part in 
the transition between liquid migration and transport 
by gaseous diffusion. Thus the further the pendular 
state begins from the hygroscopic range, the greater 
the evaporation front steepens (Fig. 12). 
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FIG. 10. Influence of intrinsic permeability: comparison between (a) brick and (b) wood. 
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x km) 

FIG. 12. Influence of irreducible saturation (brick) 

5. REDUCTION OF THE MODEL 

5.1. Heat transport by convection 
The energy conservation equation (9) can take the 

usual form 

Drying was simulated with and without the terms 
of heat transport by convection obtained in this equa- 
tion. The change in temperature gradient, even when 
the latter is at its highest (transient period) remains 
less than 1% and the change in total drying time is a 
mere 0.5%. 

Also for forced convection drying below the boiling 
point these terms in energy balance can be left out. It 
is interesting to specify that the terms of equation (9) 

are more important and neglecting them can lead to 
appreciable errors. 

5.2. Conservation equation of gaseous phase 
The dry air flux (pap&) is often weak compared to 

vapour flux. Taking p,PV, = 0 leads to a new ex- 
pression of the vapour flux 

Developing the gradient with the aid of the relation- 
ships of perfect gases (12) and (13) and using Darcy’s 
law (3) to express the term (a/ax) si make it possible 
to write the vapour flux as follows : 

0 I I I I 
01 I IO 100 1000 

KKg /Au, 

FIG. 13. The effect of the pressure gradient as a function of 
physical characteristics and drying conditions. 

YbO 

q\ = (1 l tAv,/KK,) (30) 

with 

Pi M&U: 
A = (1 -pV//pp) Defr (p:M,+jF$MV)2 (31) 

and 

4”O = _A!$!$ 
P: ax 

(32) 

where qyo is the vapour flux obtained by taking the 
gaseous pressure as constant. The value of qV is always 
less than qVO. The difference between these two fluxes 
results from the inhibition of the diffusion by the total 
pressure gradient (term & in the gradient of equation 
(29)). It is worth noting that this gradient of the total 
pressure results, through Darcy’s law, from the resist- 
ance of the porous medium to the barycentric motion 
of the gaseous phase generated by diffusion. 

Figure 13 shows those values of AvJKK, for which 
the pressure gradient influence is negligible. In such 
cases, the pressure of the gaseous phase is taken equal 
to atmospheric pressure. Darcy’s law and mass con- 
servation for the gaseous phase can be discarded. The 
simulation shows that these two assumptions give very 
close results for brick (error less than 1 X). 

In the case of wood, the resistance of the porous 
medium to gaseous migration is very important. The 
pressure gradient generated by the diffusive flux of 
vapour is too great to be neglected (Figs. 13 and 14). 
However, when gaseous pressure has no effect on 
liquid migration (pendular state) a good approxi- 
mation is obtained by correcting the diffusivity with 
multiplying factor 

6. CONCLUSION 

The aim of this study is to describe heat and mass 
transfer during drying by forced convection of porous 
media. The model used is very comprehensive. Sim- 
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FIG. 14. The effect of the pressure gradient upon drying 
(wood) : --, complete model ; -. -, &,I& = 0, pi = pa,,,,; 

---> 1 d /? 5. = 0, P; = P,,,, D,, = &,/(I + Av,/K&). 

plistic assumptions have been avoided, especially inso- 
far as the effect of gaseous pressure is concerned. This 
model is numerically resolved and the drying process 
is simulated for two very different porous media. The 
temperature remains below the boiling point. 

This study permitted the selection of the parameters 
for which the model is most sensitive. Among different 
physical characteristics of porous media, the model is 
sensitive to permeabilities and to effective diffusivity, 
i.e. to those parameters which characterize moisture 
migration fitness. 

On the other hand, at the interface, the drying is 
p~ncipaIly controlled by the heat exchange coefficient. 
The resistance to mass transfer proved negligible, 
especially as the equilibrium temperature increases. 

Greater insight into important phenomena such as 
gaseous pressure has been obtained by comparing the 
results for two different porous media. When gaseous 
permeability is weak, taking the total pressure of the 
gaseous phase into account reduces liquid migration 
as well as vapour diffusion. 

Finally, we have determined the conditions for 
which certain reductions of the model lead to good 
approximations. The simplifications made are sig- 
nificant as they obviate the need to calculate pressure 
and heat transport by convection. 
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APPENDIX (PHYSiCAL CHARACTERISTICS) 

(Units are specified in nomenclature. Tin Kelvin) 

1. Brick 

~=0.26; K=2.5~10-‘~; p,=2600; 

C,,, = 879 ; 1, = 1.442. 

Capillary pressure (deduced from empirical Levret 
approach) [ 141 

& = aoJ(S)/K 

where 

J(S) = 0.364(1 -exp(-40(1 -S)))+O.221(1-S) 

+0.005/(~-0.08). 

Relative permeabilities [14] 

& = I-l.IS, s<s:, = l/l.1 

Kg =0, s > s:, 
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K, = (S-&)/(1 -Sir), S > S,, = 0.09 

K = 0, s < s,,. 

Effective diffusivity [15] 

Dem = D(1 -S)2~“3. B 

Effective thermal conductivity [16] 

Izeff = (Q, +ji;a, +x(1 -a)) Iin with n = 0.25. 

Vapour pressure [8] 

p” = .& exp (-2eMJrpiRT) 

with 

log(r) = 2.16 lo-*+43.8S-253.5S2+794.54S3 

-1333.7S4+1111S5-352.5S6-10. 

2. Softwood 

E = 0.66 ; K = 10-‘6; ps = 500, C,, = 1400. 

Capillary pressure [ 131 

pc = ~1.364~ 105U~o.63 , CJ, = u-u,,,. 

Effective diffusivity [17, 181 

Den = K,(D/45). 

Relative permeabilities [7] 

KS G 

UC U,f 1 0 

0 < u, < u,, 0.95(1 -J(u,/u,,))+o.o5 0 

u,r 4 VI < UC, 0.05 0.95(J(WW - 1) 

vcr < u, 0.05 
( 

I - g$ 
111 cr > 

0.95f0.05~ 
*a, CT 

Effective thermal conductivity [19] 

U > 0.4: be = (0.0065/U+O.O932) (0.986+2.711) 

x(3.55+3.65F)lO-’ 

U < 0.4: & = (0.129-0.049U) (0.986+2.711) 

x (1+(2.05+4U)(F-273) x lo-‘). 

Vapour pressure [ 191 

pv =p,,exp((17.884-0.1423r 

+0.0002363~*)(l.0327-0.000674~)92”). 

Fibre saturation point [17] 

Uprf = 0.598-O.OOlj? 

LE SECHAGE CONVECTIF DE MILIEUX POREUX : ETUDE DETAILLEE D’UN MODELE 
DE TRANSFERT DE CHALEUR ET DE MASSE 

R&m&-La formulation des transferts couples de chaleur et de masse utilisee ici est issue de la theorie 
de Whitaker. Le systtme d’tquations, trts general, prend notamment en compte l’effet de la pression de la 
phase gazeuse. I1 est utilise pour simmer numeriquement le stchage de deux milieux poreux fort differents, 
dans le cas de transferts monodimensionnels. La temperature reste inferieure au point d’ebullition. Les 
resultats montrent l’evolution des profils internes de chacune des variables (temperature, teneur en eau et 
pression) ainsi que les cinetiques de sechage. La comparaison entre les deux milieux permet de mieux 
apprehender la sensibilite de modele aux parametres internes et aux conditions a I’interface ainsi que 

1%propos de certaines reductions du modtle. 

DETAILLIERTE UNTERSUCHUNG EINES MODELLS FUR DEN WARME- UND 
STOFFTRANSPORT BE1 DER KONVEKTIVEN TROCKNUNG PORdSER MEDIEN 

Zusammenfassung-Das hier verwendete Model1 fur den Wlrme- und Stofftransport in pordsen Medien 
ist von der Whitaker-Theorie abgeleitet. Sie fiihrt zu einem sehr umfassenden Gleichungssystem und 
beriicksichtigt den Effekt des Gasdrucks. Die numerische Losung erfolgt mit eindimensionaler Uber- 
tragung. Fur zwei sehr unterschiedliche porbse Medien werden der Verlauf von Temperatur, Wassergehalt 
und Druck sowie die Kinetik des gesamten Trocknungsvorgangs berechnet. Mit diesem Hilfsmittel kiinnen 
die Auswirkung von internen Parametern und Bedingungen an der Grenztlbhe auf das Model1 sowie die 

Auswirkung bestimmter Vereinfachungen im Model1 untersucht werden. 

HCCJIEfiOBAHHE MOAEJIH TEI-IJIO- M MACCOI-IEPEHOCA IIPM KOHBEKTHBHO$I 
CYBIKE I-IOPHCTO$I CPEAbI 

hIHOTPIPBI--klCnOJIb3yeMaK B AaHHOi? pa6oTe MOAenb Tenno- w MaccorIepemca BUBOAUTCK H3 Teopm 

BEiTaKKepa.B pe.synbTaTenoJIyvaeTcn 3aMKHyTaKcucreMaypaBHeHHii,~ KOT0pOii yWiTbIBaeTcK3f&#m~ 

AaBJIeHHIl I23a.OAHOMepHaX CHCTeMa peJIIaeTC%l ~HCJleHHO.~liAByXCyLLWCTBeHHO OTJIHSBKWHXCII II0 

CBONM CBOiiCTBaM ITOpHCTbIX~ApaCCSiTbXBaeTCK 3BOJllOIWII BO BpeMeHH lIOJIekTeMAepaTypbI,BJIarO- 

COAepxaHE4,AaBAeHHK napa, a TaKlKe HHTerpUbHbIe KHHeTHWCKAe XapaKTepHCTHKH npO,,eCCa CyIAKH. 

AaHHbIii MeTOA paC%Ta lI03BOAleT HCCAeAOBaTb 'IyBCTBHTeJIbHOCTb MOAeJIH K BAEUIHHIO BH)rTPeHHHX 


